publications
2023
- CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentationReuben Dorent, Aaron Kujawa, Marina Ivory, and 37 more authorsMedical Image Analysis, 2023
Domain Adaptation (DA) has recently been of strong interest in the medical imaging community. While a large variety of DA techniques have been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, these datasets mostly addressed single-class problems. To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality Domain Adaptation. The goal of the challenge is to segment two key brain structures involved in the follow-up and treatment planning of vestibular schwannoma (VS): the VS and the cochleas. Currently, the diagnosis and surveillance in patients with VS are commonly performed using contrast-enhanced T1 (ceT1) MR imaging. However, there is growing interest in using non-contrast imaging sequences such as high-resolution T2 (hrT2) imaging. For this reason, we established an unsupervised cross-modality segmentation benchmark. The training dataset provides annotated ceT1 scans (N=105) and unpaired non-annotated hrT2 scans (N=105). The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT2 scans as provided in the testing set (N=137). This problem is particularly challenging given the large intensity distribution gap across the modalities and the small volume of the structures. A total of 55 teams from 16 countries submitted predictions to the validation leaderboard. Among them, 16 teams from 9 different countries submitted their algorithm for the evaluation phase. The level of performance reached by the top-performing teams is strikingly high (best median Dice score — VS: 0.88; Cochleas: 0.86) and close to full supervision (median Dice score — VS: 0.92; Cochleas: 0.87). All top-performing methods made use of an image-to-image translation approach to transform the source-domain images into pseudo-target-domain images. A segmentation network was then trained using these generated images and the manual annotations provided for the source image.
- medigan: a Python library of pretrained generative models for medical image synthesisRichard Osuala, Grzegorz Skorupko, Noussair Lazrak, and 8 more authorsJournal of Medical Imaging, 2023
Synthetic data generated by generative models can enhance the performance and capabilities of data-hungry deep learning models in medical imaging. However, there is (1) limited availability of (synthetic) datasets and (2) generative models are complex to train, which hinders their adoption in research and clinical applications. To reduce this entry barrier, we propose medigan, a one-stop shop for pretrained generative models implemented as an open-source framework-agnostic Python library. medigan allows researchers and developers to create, increase, and domain-adapt their training data in just a few lines of code. Guided by design decisions based on gathered end-user requirements, we implement medigan based on modular components for generative model (i) execution, (ii) visualisation, (iii) search & ranking, and (iv) contribution. The library’s scalability and design is demonstrated by its growing number of integrated and readily-usable pretrained generative models consisting of 21 models utilising 9 different Generative Adversarial Network architectures trained on 11 datasets from 4 domains, namely, mammography, endoscopy, x-ray, and MRI. Furthermore, 3 applications of medigan are analysed in this work, which include (a) enabling community-wide sharing of restricted data, (b) investigating generative model evaluation metrics, and (c) improving clinical downstream tasks. In (b), extending on common medical image synthesis assessment and reporting standards, we show Fréchet Inception Distance variability based on image normalisation and radiology-specific feature extraction.
- FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcareKarim Lekadir, Aasa Feragen, Abdul Joseph Fofanah, and 115 more authors2023
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI.
- Pre- to Post-Contrast Breast MRI Synthesis for Enhanced Tumour SegmentationRichard Osuala, Smriti Joshi, Apostolia Tsirikoglou, and 4 more authors2023
Despite its benefits for tumour detection and treatment, the administration of contrast agents in dynamic contrast-enhanced MRI (DCE-MRI) is associated with a range of issues, including their invasiveness, bioaccumulation, and a risk of nephrogenic systemic fibrosis. This study explores the feasibility of producing synthetic contrast enhancements by translating pre-contrast T1-weighted fat-saturated breast MRI to their corresponding first DCE-MRI sequence leveraging the capabilities of a generative adversarial network (GAN). Additionally, we introduce a Scaled Aggregate Measure (SAMe) designed for quantitatively evaluating the quality of synthetic data in a principled manner and serving as a basis for selecting the optimal generative model. We assess the generated DCE-MRI data using quantitative image quality metrics and apply them to the downstream task of 3D breast tumour segmentation. Our results highlight the potential of post-contrast DCE-MRI synthesis in enhancing the robustness of breast tumour segmentation models via data augmentation.
2021
- nn-UNet training on CycleGAN-translated images for cross-modal domain adaptation in biomedical imagingSmriti Joshi, Richard Osuala, Carlos Martı́n-Isla, and 4 more authorsIn International MICCAI Brainlesion Workshop, 2021
In recent years, deep learning models have considerably advanced the performance of segmentation tasks on Brain Magnetic Resonance Imaging (MRI). However, these models show a considerable performance drop when they are evaluated on unseen data from a different distribution. Since annotation is often a hard and costly task requiring expert supervision, it is necessary to develop ways in which existing models can be adapted to the unseen domains without any additional labelled information. In this work, we explore one such technique which extends the CycleGAN architecture to generate label-preserving data in the target domain. The synthetic target domain data is used to train the nn-UNet framework for the task of multi-label segmentation. The experiments are conducted and evaluated on the dataset [1] provided in the ‘Cross-Modality Domain Adaptation for Medical Image Segmentation’ challenge for segmentation of vestibular schwannoma (VS) tumour and cochlea on contrast enhanced (ceT1) and high resolution (hrT2) MRI scans. In the proposed approach, our model obtains dice scores (DSC) 0.73 and 0.49 for tumour and cochlea respectively on the validation set of the dataset. This indicates the applicability of the proposed technique to real-world problems where data may be obtained by different acquisition protocols as in [1] where hrT2 images are more reliable, safer, and lower-cost alternative to ceT1.